Function & Relation

Functions and Relations

Understanding functions and relations is essential for solving problems in arithmetic aptitude, especially for BBA students. Here’s a detailed explanation of these concepts:

1. Relations

Definition: A relation from a set AA to a set BB is a subset of the Cartesian product A×BA \times B. It consists of ordered pairs where the first element is from AA and the second element is from BB.

Notation: If A={1,2}A = \{1, 2\} and B={a,b}B = \{a, b\}, a relation RR from AA to BB can be written as RA×BR \subseteq A \times B. For example, R={(1,a),(2,b)}R = \{(1, a), (2, b)\}.

Example: If A={1,2}A = \{1, 2\} and B={a,b}B = \{a, b\}, possible relations include:

  • R={(1,a),(2,b)}R = \{(1, a), (2, b)\}
  • R={(1,a),(1,b),(2,a)}R = \{(1, a), (1, b), (2, a)\}

2. Functions

Definition: A function ff from a set AA to a set BB is a special type of relation where each element in AA is associated with exactly one element in BB. It is denoted as f:AB

Domain, Codomain, and Range:

  • Domain: The set of all possible inputs for the function.
  • Codomain: The set of all possible outputs (not necessarily the actual outputs).
  • Range: The set of all actual outputs of the function.

Example: Let A={1,2,3}A = \{1, 2, 3\} and B={a,b}B = \{a, b\}. A function ff from AA to BB could be f={(1,a),(2,b),(3,a)}f = \{(1, a), (2, b), (3, a)\}.

  • Domain: {1,2,3}\{1, 2, 3\}
  • Codomain: {a,b}\{a, b\}
  • Range: {a,b}\{a, b\}

Function Notation: If f(x)=yf(x) = y, then xx is an element from the domain and yy is the corresponding element in the codomain.

3. Types of Functions

One-to-One (Injective) Function: A function f:ABf: A \to B is injective if different elements in AA map to different elements in BB. No two elements in the domain map to the same element in the codomain.

  • Example: For f(x)=2xf(x) = 2x where A={1,2,3}A = \{1, 2, 3\} and B={2,4,6}B = \{2, 4, 6\}, ff is injective because:
    • f(1)=2f(1) = 2
    • f(2)=4f(2) = 4
    • f(3)=6

Onto (Surjective) Function: A function f:ABf: A \to B is surjective if every element in BB is mapped by at least one element in AA. Every element in the codomain has a pre-image in the domain.

  • Example: For f(x)=x2f(x) = x^2 where A={1,2,3}A = \{1, 2, 3\} and B={1,4,9}B = \{1, 4, 9\}, ff is surjective because:
    • f(1)=1f(1) = 1
    • f(2)=4
    • f(3)=9f(3) = 9

One-to-One Correspondence (Bi-jective) Function: A function f:ABf: A \to B is bijective if it is both injective and surjective. Every element in AA maps to a unique element in BB, and every element in BB is mapped by exactly one element in AA.

  • Example: For f(x)=x+1f(x) = x + 1 where A={1,2,3}A = \{1, 2, 3\} and B={2,3,4}B = \{2, 3, 4\}, ff is bijective because:
  • f(1)=2
  • f(2)=3
  • f(3)=4

4. Domain, Codomain, and Range

Domain: The set of all possible input values for the function.

  • Example: For f(x)=x2f(x) = x^2where xRx \in \mathbb{R}, the domain is all real numbers, R\mathbb{R}.

Codomain: The set of all possible output values that a function can produce.

  • Example: For f(x)=x2f(x) = x^2, if we define f:RRf: \mathbb{R} \to \mathbb{R}, the codomain is R\mathbb{R}.

Range: The set of all actual output values of the function. For f(x)=x2f(x) = x^2, the range is [0,)[0, \infty) if xRx \in \mathbb{R}.

5. Composite Functions

Definition: The composition of two functions ff and gg, denoted gfg \circ f, is a function where the output of ff is the input to gg. Formally, (gf)(x)=g(f(x))(g \circ f)(x) = g(f(x)).

Example: Let f(x)=x+1f(x) = x + 1 and g(x)=2xg(x) = 2x. The composite function gfg \circ f is: (gf)(x)=g(f(x))=g(x+1)=2(x+1)

=2𝑥+2

6. Inverse Functions

Definition: A function ff has an inverse f1f^{-1} if f(f1(x))=xf(f^{-1}(x)) = x and f1(f(x))=xf^{-1}(f(x)) = x. The inverse function f1f^{-1} reverses the mapping of ff.

Example: If f(x)=2x+3f(x) = 2x + 3, solving for xx in terms of yy yields: y=2x+3    x=y32y = 2x + 3 \implies x = \frac{y - 3}{2}

So, the inverse function f1(x)=x32f^{-1}(x) = \frac{x - 3}{2}.

Example Problems

  1. Identifying a Function: Given A={1,2,3}A = \{1, 2, 3\} and B={a,b}B = \{a, b\}, and R={(1,a),(2,b),(3,a)}R = \{(1, a), (2, b), (3, a)\}, determine if RR is a function.

    • Solution: Yes, RR is a function because each element in AA maps to exactly one element in BB.
  2. Finding Function Values: If f(x)=3x+2f(x) = 3x + 2, find f(4)f(4).

    • Solution: f(4)=3(4)+2=12+2=14f(4) = 3(4) + 2 = 12 + 2 = 14.
  3. Composite Functions: For f(x)=x2f(x) = x^2 and g(x)=x+1g(x) = x + 1, find (fg)(2)(f \circ g)(2).

    • Solution: (fg)(2)=f(g(2))=f(2+1)
=𝑓(3)=32=9.
  1. Inverse Functions: Find the inverse of f(x)=x+53f(x) = \frac{x + 5}{3}.

    • Solution: Let y=x+53y = \frac{x + 5}{3}. Solving for xx: y=x+53    x=3y5y = \frac{x + 5}{3} \implies x = 3y - 5

      So, f1(x)=3x5f^{-1}(x) = 3x - 5.

By mastering these concepts of functions and relations, BBA students will be better equipped to tackle problems in arithmetic aptitude and apply these ideas in various business and analytical contexts.